

Chiller and AHU Design for A commercial Usage

S M Azfar Hashmi, Mirza Muneer Baig, M A Kabeer, Syed Faraz Abdullah, Mohd Saber

Department of Mechanica Engineering, Lords Institute of Engineering & Technology, Hyderabad, Telangana, India

ABSTRACT

Central air conditioning is more reliable for easy operation with a lower maintenance cost. The effective design of central air conditioning can provide lower power consumption; low capital cost and improves aesthetics of a building. This paper establishes the results of cooling load calculation under different climate conditions by using HAP for a commercial building1. Heating and cooling due to people, lighting, infiltration, ventilation, and cooling load due to walls and roofs. Using ASHRAE and CARRIER Fundamental Hand Books. And here the study of air water vapor mixture, (called psychometrics) for human comfort in the air conditioning system for the city Hyderabad.

Keywords : Hourly Analysis Programme, Cubic Feet per Minute, Static Pressure, Gallons per minute, Head Loss of Chilled Water Pump.

I. INTRODUCTION

Heating, ventilating, and air conditioning (hvac):relates to systems that perform processes designed to regulate the air conditions within buildings for the comfort and safety of occupants or for commercial and industrial processes or for storage of goods. hvac systems condition and move air to desired areas of an indoor environment to create and maintain desirable temperature, humidity, ventilation and air purity.

II. METHODS AND MATERIAL

BUILDING SURVEY

Space Characteristics and Heat Load Sources: An accurate survey of the load components of the space to be air-conditioned is a basic requirement for a realistic

estimation of cooling and heating loads, the compel and accuracy of this survey is the very foundation of the estimation, and its importance cannot be over emphasized.

[1] Mechanical and architectural drawings, complete fields sketches and in some cases photographs of important aspects are part of a good survey. The following physical aspects must be considered.

Orientation of Building- location of the space to be airconditioned with respect to

- ✓ Compass points- sun and wind effects.
- ✓ Nearby permanent structures shading effects.
- ✓ Reflective surfaces- water, sand and parking lots etc.
- ✓ Use of Space(s)- Office, Hospital, departmental store, specialty shop, machine shop and factory assembly plant etc.
- ✓ Physical Dimensions of spaces (s) Length, width and height.
- ✓ Ceiling Height- Floor to floor height, floor to ceiling, clearance between suspended ceiling and beams.
- ✓ Columns and Beams- size, depth also knee braces.
- ✓ Construction Materials- Materials and thickness of wall, roof ceiling, floor and partitions and their relative's position in the structure.
- ✓ Surrounding Conditions- Exterior colour of walls and roof shaded by adjacent building or sunlight space- invented or vented, gravity or forced ventilation. Surrounding spaces conditioned or

unconditioned- temperature of non-conditioned adjacent spaces, such as furnace or boiler room, and kitchens, floors on ground, crawl space and basement.

- ✓ Window Sized and Location- wood or material sash, single or double hung, type of glass single or multiple type of shading device. Dimension of reveals and over changes.
- ✓ Doors- Location, types, size and frequency of use.
- ✓ Stairways, Elevators and Escalators- Location temperature of space if open unconditioned area. Horsepower of machinery, ventilated or not.
- ✓ People- Number, duration of occupancy, nature of activity any special concentration. At times, it is required to estimate the number of people on the basis of square feet per person, or on average traffic
- ✓ Ventilation- CFM per person, CFM per sq. ft, scheduled ventilation (agreement with purchaser) Excessive smoking orders, code requirements. Exhaust fans-type size, speed and CFM delivery.
- ✓ Thermal Storage- includes system operating scheduled (12,16 or 24 hours) per day specially during peak outdoor conditions, permissible temperature swing in space during a design day, rugs on floor, nature of surface, materials, enclosing the space.
- ✓ Continuous or Intermittent Operation- whether system be required to operate every business day during cooling seasons, or only occasionally, such as churches and ballrooms, if intermittent operation determine duration if time available for pre-cooling or pull down.

Site Drawing

Heat Load Estimation

Here we are going to proceed the load calculation with Hourly Analysis Programme Version 4.9

Hourly Analysis Program Version 4.90 North American Edition	Carrier United Technologies
This software is licensed to: SM TECHNO	
No warranty, either expressed or implied, is given with respect to the ar of the information provided hereby, and the user must assume all risks connection with the use thereof.	ccuracy or the sufficiency and responsibility in
Copyright © Carrier Corporation, 1987-2014. All Rights Reserved.	
This program is protected by US and International copyright laws.	
Ready	OK

Figure 1. HAP Software

🕷 Weather Properties - [Hyderabad]					
Design Parameters Design Temperatures Design Solar Simulation					
Region: Asia/Pacific	•		Atmospheric Clearness Number	1.00	
Location: India	•		Average Ground Reflectance	0.32	
<u>C</u> ity: Hyderabad	•		Soil Conductivity	0.950 BTU/hr/ft/F	
Latitude:	17.5	deg	Design Clg Calculation <u>M</u> onths	Mar 💌 to Jul 💌	
Longitude: Elevation:	1788.0	aeg ft	Time Zone (GMT +/-)	5.5 hours	
Summer Design <u>D</u> B	105.0	۴F	Daylight Savings Ti <u>m</u> e	C Yes @ No	
Summer Coincident <u>W</u> B	71.7	۴F	DST <u>B</u> egins	Apr 💌 1	
Summer Daily <u>R</u> ange	19.0	۴F	DST <u>E</u> nds	Oct 🔽 31	
Winter Design DB	52.0	۴F	Data Source:		
Winter Coincident WB	43.6	۴F	User Modified		
			OK	Cancel <u>H</u> elp	

Figure 2. Software for weather Properties

Air Handling Unit 1 Heat Load Estimation

Air System	Sizing Sur	nmary for GF AHU 001	
Project Name: Faraz HAP update Prepared by: SM TECHNO		•	04-12-2017 01:38AM
Air System Information Air System Name GF AHU 001 Equipment Class CW AHU Air System Type VAV		Number of zones5 Floor Area2167.0 LocationHyderabad, India	ft²
Sizing Calculation Information Calculation MonthsMar to Jul Sizing DataCalculated		Zone CFM Sizing Peak zone sensible load Space CFM Sizing Individual peak space loads	
Central Cooling Coil Sizing Data Total coil load 14.9 Total coil load 179.3 Sensibile coil load 161.7 Coil CPM et Join 500 3684 Man of peak cone CFM 4249 Sensibile heart ratio 4298 Sensibile heart ratio 4999 Sensibile heart ratio 6902 R*Tron 1449 Study of peak cone CFM 6902 R*Tron 1449 Water flow @ 10.0 *F rise 35.88	Tons MBH CFM CFM CFM CFM	Load occurs at Jun 1500 OA DB / WB 164.0 / 71.7 Entering DB / WB 52.8 / 51.8 Leaving DB / WB 52.8 / 51.8 Object 52.8 / 51.8 Opposes Factor 0.038 Resulting RH 0.43 Open S-tait Check 5 of 5 Max zone temperature deviation 0.0	"F "F "F OK "F
Supply Fan Sizing Data Actual max CFM at Jun 15004184 Standard CFM3921 Actual max CFMft ² 1.94	CFM CFM CFM/ft²	Fan motor BHP	BHP kW in wg
Outdoor Ventilation Air Data Design airflow CFM 932 CFM/ft ² 0.43	CFM CFM/ft ²	CFM/person 15.03	CFM/person

As shown above the load estimation for the area covered by AHU 1 is 14.9 Tr. Similarly, for the remaining two Air Handling Units the load estimation is as follows:

AHU 2: 8 Tr. AHU 3: 20.1 Tr.

Duct Sizing

Duct designing is done by equal friction method in which the friction loss in WC feet/ 100feet.

The air flow quantity is and the friction is scaled in a manner to get the required size of the duct in a round shape by using ASHRAE Handbook Table no.1 (Friction chart book for Round Duct)

By comparing the round duct size and the height of the required rectangular duct in the ASHRAE Handbook Table no. 2 (Equivalent Rectangular Duct Dimensions).

Static Pressure for AHU 1

S.no.	Duct Section	Air Quantity CFM	Friction in wg/100'	Velocity (FPM)	Size of Round Duct Dia.	Size of Rectangular Duct
1	1 to A	5520	0.095	1413	26	24x24
2	A to B	3840	0.095	1294	22	20x18
3	B to C	2440	0.095	1159	20	18x18
4	C to D	1000	0.095	931	14	12x14
5	D to E	600	0.095	821	11	10x10

Static Pressure:

Pressure drop in straight duct,

Total length of straight duct = 10+7.8+13.5+20.7+5.8 = **57.8**

Therefore, Pressure drop (Fr) = 0.095 of wg/100' of duct length

Therefore, Pressure drop in straight duct

 $=(57.8 \times 0.095)/100$

= 0.0549" of wg

Pressure drop in elbow

Requirements 1. R/W Ratio 2. H/W Ratio 3. C=loss co-efficient $H_f = C x (V/4000)^2$ For Elbow 1 R = 6 + 20/2 = 16

W = 20H =18 R/W = 16/20 = 0.8H/W = 18/20 = 0.9Type of elbow – Short run rectangular standards Now, from data book, page 56 table no. CR3-1. We get, as per R/W & H/W C=0.21 Therefore, $H_f = 0.21(1413/4000)^2 = 0.026$ " of wg For Elbow 2 R = 6 + 14/2 = 13" W = 14: H=12 R/W = 13/14 = 0.92H/W = 12/14 = 0.85From data book we get, C=0.21 $H_f = 0.21 (931/4000)^2 = 0.0113$ of wg

Pressure drop in diffuser

Standard pressure drop in terminal = 0.1" of wg Pressure given due to velocity regain between first and last section of duct.

Static Regain = $R[(V_1/4000)^2 - (V_2/4000)^2]$

Where, R= Recovery factor R=0.7 for complicated route R = 0.9 for simple route

 $V_1 = 1413 \& V_2 = 821$ = 0.7 [(1413/4000)² - (821/4000)²] = 0.057" of wg

Static Pressure

- > For straight duct = 0.0549
- \blacktriangleright For elbow 1 = 0.026
- > For elbow 2 = 0.0113
- For last terminal (diffuser) = 0.1
 Total = 0.1922" of wg
 Considering 10% safety factor = 0.01922
 External static pressure = 0.21142 of wg

Now,

For internal static pressure (by manufacturer) Pressure drop in filter = 0.45Pressure drop in evaporator coil = 0.2Pressure drop in system = 0.1Total = 0.75 of wg Efficiency (n) 60% *Total Static Pressure* = ESP + ISP

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

$$= 0.21142 + 0.75$$

= 0.96142 of wg

Now, Fan power in **BHP = [(CFM x Static Pressure)/(6350 x n)]** = [(5520x0.96142)/(6350x0.6)] = 1.39 HP

Similarly for the remaining other two air handling units the static pressure is calculated and are

Air Handling Unit 2: 0.89 HP = 1 HPAir Handling Unit 3: 1.74 HP = 2 HP.

CHILLER SELECTION:

The selection of Chillers is depends upon the requirement of client and the requirement of the site.

There are two types of chillers Water cooled chillers and Air cooled chillers.

Here in this we are going to use a water cooled chiller.

The total tonnage of the three AHU's is:

AHU Name	Tonnage (Tr.)
AHU 1	14.9
AHU 2	8
AHU 3	20.1
TOTAL	43

The capacity of Chiller

Tonnage of Chiller	43 Tr.
Gallons per minute	43x2.4 = 104

Now the chilled water piping is drafted to attain the chilled water pipe sizing.

From ASHRAE Handbook Chart no. 3

Friction Loss for Closed Piping Systems.

Route	Flow	Fluid	Pipe	Head
		Velocity	Size	Loss
	(GPM)	(FPS)		(ft/100ft)
			(inches)	
Chiller	105	10	2"	21.75
main				
line				
Branch	36	7	1.25"	19.483
to				
AHU				
1				
Main	69	7	2"	9.967
line				
Branch	20	7	1.25"	9.092
to				
AHU				
2				
Line to	49	7	1.5	0.955
AHU				
3				

The chiller is placed at the roof of the building and the chilled water supply to the AHU's is done by aid of gravitational force and the chilled water return from the AHU's is done with aid of chilled water pump. The capacity of the chilled water pump is carried out by the head losses occurred in the chilled water piping and the fittings in chilled water piping.

WHP = $(GPM \times H \times S) / (3960 \times efficiency of the pump)$

Where,

WHP is Water Horse Power GPM is Gallons per Minute H is Head Losses in pipes and fittings S is Specific Gravity of water

Head Losses in Pipes and fittings

From ASHRAE Handbook Table No. 10 - Valve losses in equivalent feet of pipe (feet)

Nominal pipe	Globe Valve	Gate Valve	Strainer	Butterfly	Elbow	Flexible Connection	Flexible TEE		Flexible	ГЕЕ
(inches)				Valve			Line flow	Branch Flow		
2"	55	2.3	27	2.3	1.633	2	1.8	6.6		
1.5"	43	1.8	10	1.8	0.955	2	1.5	5.2		
1.25	38	1.5	9	1.5	1.019	2	1.3	4.4		

Calculated Head Losses of chilled water piping and fittings

Total pressure drop in pipes and fittings	1.17893 feet
Pressure Drop in Chiller	10 feet
Pressure Drop in AHU	7 feet
Sub - Total	18.1783 feet
10% Safety Factor	1.817893'
Total Head Required H	20.89'

Applying the above all values in the formula

WHP = (GPM x H x S) / (3960 x efficiency of the pump)

WHP = (104 x 20.89 x 1) / (3960 x 0.6) = 0.91 HP = 1 HP

Here the calculated water Horse Power of the chilled water pump is 1 HP.

Figure 3. Chilled water piping routing and chilled water pump

Figure 1. Drafted Drawing of HVAC output

Designed Output Data

	AHU 1	AHU 2	AHU 3	Total
HAP (Tr.)	14.9	8	20	46
Static pressure of wg	0.96142	0.857	0.9038	2.72
Blower (HP)	1.5	1	2	4.5
Chilled water pump				1
(HP)				

III. CONCLUSION

Hence we meet the building demand for Heating Ventilation and Air Conditioning using AHU's and Chiller was found to be satisfactory using standards ASHRAE and CARRIER.

IV. REFERENCES

- Milne, M, et al., "Climate Consultant 40 Develops Design Guidelines for Each Unique Climate, "proceedings of the American Solar Society. Buffalo New York, 2009.
- [2]. Givoni, b., Man Climate and Architecture, Van Nostrand Reinhold, 1981.
- [3]. Givoni, B., Climate Considerations in building and Urban Design. John Wiley and Sons, New York, 1998.
- [4]. Driscoll, M. P., Psychology of learning for Instruction. Pearson Education, Florida State University, 2005.
- [5]. "Fundamentals of HVACR " by Carter Stanfield, David Skaves 2009